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ABSTRACT

The tetrachor ic series is a technique for evaluating mu ltivariate norma l

• probab ilities frequently ci ted in the statistical literature . In this paper

we have examined the convergence properties of the tetrachoric series and have

established the following.

Fpr orthant probabilities , the tetrachoric series conver ges if
) r~-~

• < l /(k—l ), 1 < I < j < k , where are the correlat ion coe ff ic ien ts of

a k-variate normal distribution. The tetrachoric series for orthant proba-

bilities diverges whenever k is even and p~ > l/(k-l) or k is odd and

l /(k—2), 1 < I < j k

Other specific results concerning the convergence or divergence of this

series are also g iven .

The principal point is that the assertion that the tetrachoric series

converges for all k > 2 and all ~p~-
3 

such that the correlation ma tri x i s

• positive definite is false. 
-
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SIGNIFICANCE AN t) EXPLANATION

A standard techniqu e for evaluating mul tivariate normal

probabili ties , widely cited in the literatur e , i s known as the

tetrachor i c ser i es.

In  th i s re port , It is shown that this technique is defective

i n that the se ri es w i ll somet imes d i verge . 

1i responsTbility for the wording and v iews expressé’~[Tr~ th i s descr i pti ves umma ry li es w i th I4RC , and not wi th the authors of th is report .
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THE USE OF THE TETRACHORIC SERIES
FOR EVALUAT I1IG JIULTI VARIATE NORMAL PROBABILITIES

Bernard Harris and Andrew P . Soms

1. INTRODUCT ION AND SUMMARY

Let X = (X l,X 2,...,Xk), k > 2 , be a normally distributed random vector

with zero means and unit variances , that is , X has the probability density

function

• f_.(xl,x2,...,xk) 
= (2ir)

_
~~
2

IR I
_½
e~~~ 

R X 
‘ (1.1)

where x (x l~
x2~

...
~
xk)

T, AT denotes the transpose of the matrix A , and R,the

correlation, matrix is a k x k positive definite symmetric matrix with elements

and p11 = 1 , 1 = l ,2,...,k. Further , let

~ 2/2
q ( x )  = (27r) 2 e~~

the standard normal probability density function,and let

p
x

~(x) = f  q (t)dt.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.



In addition , le t

H_1 (x) = (l— c ~(x))/q(x) (1.2)

and for i > 0 , let

H.(x) = e~
(2
~
’2(~ l) 1 (e~~ ”~). (1.3)1 dx

For i > 0 , H~(x) are the Hermite polynomials.

In orde r to evaluate

= 

hk h2 ~ 

f
~

(x l~
x2,...,xk)dx l dx2...dxk,

• (1.4)

.G . Kenda ll [6] proposed writing

—2—
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P{X
l >h l~

X2>h2,...,xk>hkJ =

13p. .
r- ~~~~ H~~~1 (h1)4(h.)~ (1.5)

n12=0 “k— l ,k 0 1<i<j<k ij i=l 1

where n 1 
= 

~~~~~~~~~ 

+ Y.fljj.
j : i<j j:j <i

The right hand side of (1.5) is called the tetrachori c series. The

particular case obtained by ordering the terms of (1.5) with res pect to in-

creasing values of En Lj~ 
namely

~).3 k
~ n

1’3
’ ~ ~ - l i~~~~i~ ’ (1.6)

N—0 fl 12 nk_l ,k 1~ i<j~k 1j 1=1 1

i~here n ,~ > 0  and En 1~ = N, is known as the Kibble series or the tetrachoric

series with Kibble ordering , since W.F. Kibble [9] obta i ned the corres-

ponding series for the mul tivariate normal density function . Note that

(1.6) is the result that would be obtained upon integrating the series given

in [9] term-by-term . Consequently , to avoid ambiguity , we will refer to

the series obtained by Kibble in [9] as the Kibble series and we will cal l

~~~~ the corresponding series for the mu ltivariate normal distribution the

—3—
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tetrachoric series with Kibble ordering.

In the sequel , to simplify notation , the right hand side of (1.5) will

be denoted by Tk(hl,h2,...hk) and Tk(0~
O ,.. .,0) will be denoted by Tk~

Similarly, the right hand side of (1.6) will be denoted by T
~
(hl,h2I...,hk)

and T~. Al so, sums or products on (i ,j) with 1 < I < j < k will be indexed

by i < j.

The tetrachoric series is widely employed in appl ications of multi -

variate analysis and is quoted in many standard books on statistics and in

many papers as a suggested method for evaluating (1.4), often with the

comment that convergence may be slow unless ~~~ is small for all i ,j,

i 
~ j. Specifi cally, the reader is referred to T.W. Anderson [1], page 19 ,

where the tetrachoric series is suggested as a way of evaluating multi-

variate normal probabilities . In R.E. Barl ow, D.J. Bartholomew , J.M.

Bremner, and H.D. Brunk [2], page 137, the tetrachoric series is mentioned

as one of several possible ways to evaluate orthant probabilities . They

comment that the convergence is not “fast enough for practi cal use unless

the p1~ ’s are small” . R.L. Plackett [12] comments that “although the

tetrachoric series will always converge, it does so very slowly when the

~~ 
_ _ _  

-4-
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absolute values of the correlation coefficients are near unity” . The Kibble

and tetrachoric series are described in connection with orthant probabilities

in N.L. Johnson and S. Kotz [5], pages 44-46, where they note that “these series

converge very slowly unless all the p.~~’s are small” . M.G. Kendall and A.

Stuart [8] describe the tetrachoric series on pages 352—353 and assert that

the series for the orthant probabilities always converges , but only slowly

if the p~ are not small. G.P. Steck [13] described the Kendall technique

noting that the resulting series converges slowly when the p1~ are large .

S.S. Gupta [4] discussed both the resul ts of Kendall and Kibble for the

trivariate normal distribution , remarking that the series converge only very

slowly for high values of Jp 1~~
. In [7], M.G. Kendall employed the tetra-

choric series for orthant probabilities to study the distribution of upruns

(sequences of increasing observations) in a time series . For this purpose ,

he specifically gives the terms of the tetrachoric series for the orthant

probabilities for k = 2,3,4. He says that “the ex p ress ions are not as

difficult as they look” and that “they converge fairly quickly for damped

autoregressi ve series”. Kendall says further that “they are, he thinks ,

amenable to calcula tion ” .

-5-
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In this paper , we have reexamined the convergence of the tetrachoric

series and have ascertained that under specified conditions on the corre-

lation matrix R , the tetrachoric series will in fact diverse.

The development in this paper is as fol l ows. In section twO, we dis-

cuss the Kibble series for the multivariat e normal density function , which

is an intermediate step in arriving at the tetrachoric series . This will

permit us to subsequently indicate the difficulty with the tetrachoric

series . A sufficient condition for the convergence of the tetrachoric series

is given in section three. The thi rd section is also devoted to illustrations

~f the non-convergence of the tetrachoric series .

2. THE KIBBLE SERIES FOR NE I4JLTIVARIATE

flo~~i. D~ sriv FWcTI0N

F.G. ~ehle r [10] derived series expansion for the density function

of the bivariate norma l distribution . This was subsequently extended to the

~~: ‘~ral k-varia te density (1.1) by W.F. Kibble [9]. Unfortunately, Kibble ’s

~oper Ljntains some defects and as we will show , the Kibble series does not

r •~~~aril y converge . Since this is an inte rmediate step in arriving at

-6- 
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the tetrachori c series , it is desirable to rederive the Kibble series , whic h

will permit us to obtain both a correct resul t as well as to indicate the

error in Kibble ’s paper. Accordingly, we fi rst establish the following theorem.

THEOREM 1. For -l /(k—l) < p s . <l /(k-l), 1 < i < j < k ,

n .

f
~
(xl , x2,...,xk) = ... n H (x.)~ (x.). (2.1)

X n12=0 nk_ 1 ,k O ~~ 13 i=l ~

I
This series is known as the Kibbl e series and conver ges absolutely if the

sat isfy the above restrictions.

Proof . Let 
~
(tl~

t2,...,tk ) = e~~t Rt 
~ = (tl, t2,...,tk)

T.

• Y(tl ,t2,...,tk) is the characteristic function of the k-variate normal dis-

tribution . Then , from the inversion theorem ,

f
~
(xl , x2....,xk) 

= (2~;Y
k f ... f ~~~~

(2.2)

~riting

= e
T

i~~i
~ ij t i tj ~~~~~ 

~ 

~~~~~~~~~-- (~~~p1.t .t.)
N (2.3)

-7-
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and expanding the last factor in a mu ltinomi al series , we obtain

fl n l k n fl

~(t) = e~~t
Tt ~ (1)N ~ P~~~

2
. ; .P

k
k
i k ~~~ ..tk

k 

(2.4)
N=0 12”” k-l ,k~

where the inner sum is over ~~ > 0 with In
~~ 

= N. A rearrangement of

terms yields

i~ T~ (-p..) 13 k n.
= e 2 ... r~ ij t .~

1 
. (2 .5)

1< .) 13 i=l

For 
~~~ 

< p < l/(k—l), 1 < i < j < k , let

- 

p .E .It itjl
g(t) = e 1<3 

(2.6)

Then

ie itT~~t
Tt g(t)J = e~~

t t  g(t) (2. 7)

-6-
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obviously domirates the partia l sums in (2.4) and (2.5) and as the follow-

ing argument shows , (2.7) is integrabie.

Note that

(2~yk/2 
f ... f e~~

t t g(t)dt1 dt2...dt~ 
= 2k I E I½ P{X >O . . ~~~~~

(2.8)

where (X1,X2,...,Xk) has the multivariate normal distribution with

= (0 13 ) ~~ 1 ~~ —p, i 
~ 
j and the hypothesis p

~ 
< l/(k-l) in-

• sures that E is positive definite . Thus , we can substitute (2.4) or (2.5)

into (2.2) and interchange the order of integration and summation . Thus

• ~n 1J
k Co (-p..j

= (2n) ... 
~~~~~ n.”?X n 12 0 

~
lk~l,k

_ O 
~~

k Co -it.x.-½t~ n.IT f e 1 1 1t.1dt. . (2. 9)
i=1 -Co 

1 1

Using (1.3), the integral in (2.9) is easily evaluated obtaining

_ _  ~~~~~~~



Co (-p. .) fl k n .
f~(x1,x2,...,x )  = ... ~ (-1) ~
X n12 0 nk l ,k=O i<j ij • i=l

k
The fi rst part of the conclusion follows upon observing that ~ n. = 2 ~ fl j..

i=l~~ i<j ~
k ~~~

. . L ! u i j
Hence II (-1) 1 

= (-1) <‘~ 
, 
verifying (2.1). The absolite convergence follows

i=l

from (2.7), (2.8) and the observation that convergence for < 1/(k-1)

implies absolute convergence , since (2.1) is a power series.

B~t’v~RKs . In [9], Kibble actually ordered the terms as indicated in (1.6).

This is equivalent to (2.1) whenever the series converges absolutely.

“ibble did not assume 
~~~ 

< 1/(k-1) and merely asserted that term-by-term

~r)~~QratjOn is permissible and that the series woul d then be absolutely con-

• vo ent for all values of the variables if R is positive definite .

Ke now reexamine the hypothesis p~~j < l/(k-l) to show that if this

condition is violated , the Kibble series may in fact diverge .

If k = 2, f..(x 1 ,x2) is the• bivariate normal probabilit y density
x

I, 

-10- 
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function and the condition of Theorem 1 always holds . Theorem 1 is pre-

cisely Mehier ’s theorem in that case. Hence consider k > 2.

For n > 0,

In1
L 2 J  m n-2m

H (x) = n! ~ ~~~ 
x , 

(2.10)
m 0  2 m!(n-2m)!

so that

0 
, 

n odd

• H (0) = 
n ’(-l)~~

2 (2.11), 
n even .

(n/2)!

We will now calculate f.(0,0,... ,0), using the Kibble series, for the
X

special case ~~ = 
~~‘ ~ t j, and compare this with (1.1), which gives

f~(0,0, . .  . ,0) = (2~~
k/2 I R l ½

X

Substituting (2.11) into (2.1) we get

k

k 
Co k n. ! L n ~/2

f- (O ,O ,. .. ,O) = (271) /2 
n ~=0 -0 . 1 1nj2~) !  ~ n..! /2)1~~
12 nk l ,k— 1 1 

~~~ 
13

(2.12)

-11-
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Thus for any p0 for wh i ch (2.12) converges , it will converge absolutely for

any p with IpI < p0. For such p. we can rearrange the order of terms in

(2.12) so that it is a power series. Further , if ~~ = 
~ ~ 

j ,  it is

easily seen that

IR I = (1+ (k-l)p)(l-p)~~~.

k/2 ~Hence , the power series expansion for (2ir) IR I must be the same as

the power series indicated by (2.12). However , the power series for I R l~ has a

radius of convergence of l/(k-l) wh ich implies the divergence of (2.1) when-

ever Ip~~J > l/(k-l), 1 < i < < k. Thus, we have shown that in the

equicorrelated case, Theorem 1 can not be improved upon .

3. THE CONVERGENCE OF NE TETRAGIORIC SERIES

Kendall [6) obtained the tetrachoric series by integrating the

characteristic function term-by-term as in (2.9). Then he integrated the re-

suiting expression (2.1) term-by-term obtaining

•~



f
~
(xi,x2,...,xk)dxl dx2...dxk = Tk(hl,h2~

...,hk). (3.1)

We now discuss the convergence of the tetrachoric series .

THEoREM 2. Let hl~
h2~

...hk be arbitrary real numbers . Then if

< l/(k-1), 1 < I < j  < k, the tetrachoric series Tk(h l,h2,...,hk)

converges absolutely.

Proof. From Erdéiyi , Magnus , Oberhettinger , Tricomi [3), p. 208,

for n > 0

2
IH~(x)I < ce~ 

/4(~ i)½ (3.2)

where c — 1.086. Then , from (2.1),

k
~ij E x~/4

< ~
k 
~ ~ 

(IP i~ I 
)e~~

1 II (n1 !)~~(x1)x n12 0 
~k~l ,k 0 ~~~ ij~ i=l

k 2
k ~~~~ x1/4 Co Co Ip. 1

n 1~ k
C 1 1  1I_ 13

(2ir) n12 0 ~k—l ,k 0 ~K.) ~~~ 
i l

(3.3)



Let ~ = max Jp ~~j < l/(k -l). Then ,
i <j

n.. n.. fl..
Ip. .~~ ~ k lp. .

~~ 

13 i p . . !  31 k
~ (~i~

)
~ 

= ( ~ - 
1.) 

I - ni .)
i<j ij• 1=1 i<j ij~ i>j ji~ 1= 1

n.. n.. •-~½
~ 

k r 13 31

11 IIL1~ 
[ j : i <j  ij~ j: i>j j i~

The expression inside the bracket is a term of the multino rnial expansion of

( 
~ p~ .j + 

~ I~1 .I ) 1 . Thus
j : i< j  ~ j : i> j  ‘~

n.
13 

~
, r I’) Zn..p ..  if l .~ c~ . . 13

~~~ .
~~~ (n

~
!Y2 < (

..
~~~ . lc ~•,~l + 

~ 1 I) 1 
< ((k—1)~)

’<3
1<3 13 i — i  3 .1< 3

k
since ~ n~ = 2 

~ 
fl j~ Substituting this into (3.3), we have

i=l i<j ~

-14-
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k 2Z x./4 Zn..
cke i=l 

Co Co 
- i< -~ 

13
((k 1)p)

I C. I’.. — ~~~~~~~~~~ =0x ¼ (~lT) fl2~ ’ nk l  ,k

k
- E x~/4k i=l ’ Co n..

— c e ~ v ( (~ 1~~~\ 13
• 

— k’2 L ‘‘ —

(2~) ‘ i<j

k
- 

~~ x~/4

= ~~
_i= l_

k (l- (k-l)~~~~~~~~
2. (3.4)

(2~) 
/2

Since (3.4) dominates all partial sums of the Kibble series and is ob-

viously integrable , the dominated convergence theorem applies and the Kibble

series is integrable for ~~~ < l/(k-l). Hence ,

n .
Co Co p. 13 k Co

P{X l >h l,...,Xk >h k
} = 11 n~~’ 

n f Hn (x1)~ (x~)dx1.n12 0 
~k-1 ,k~

0 i<i ii~ 1=1 h 1 I

For n 1 > 0, from (1.3)

f H~ (x)~(x)dx H 1 (h.)~ (h.) (3.5)
I 

n 1 1



and for n1 
= 0, since H0(x) = 1 , we get

f H0(x)~(x)dx = f ~(x )dx = l-~(h) = [
~~

] ~(h),

as require d by (1.2), and (3.1) follows.

To show the absolute convergence of Tk(h l,h2,...hk), we first note that

for n = 0

1H 1 (x )~ <~~~x 2,2

and f o r n > O

< ceX / ( ( n - i ) ! )  2 < 3(n! ) 2eX

Consequently , by a minor modification of the argument leading to (3.4)

~ ~ /2 l- k-l~~~~~~
1’2 ’

(2ff)

-16- 
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for Ip~~I <1/(k-l), establishing the absolute convergence .

We now investigate the possible relaxation of the hypothesis

< l/ (k- 1) , 1 < I < < k. For this purpose , we fi rst investigate the

computation of the orthant probabilities for k = 3 using the Kibble orderin g.

Thus , we compute

n12 n13 n23
‘2 -3/2 ~ ~ ~ 2 ~~3 

p
23 H (0’H H (0)

~ N~0 
L n12 !n13 !n23! nl2+nl3 -i ‘ n12+n23-l(0) n13

+n23-l

k
From (2.11), in order that the product II Hn (0) not vanish , we must have

1=1 1— 1

every n1 
= 0 or an odd positive integer. We show that , for k = 3, the only

non-vanishing terms are n12 
= n13 

= n23 
= 0 or two of n12,n13,n23 are zero

and the remaining one is odd. To see this , note that if one of n12,n13,n23

is zero , say n 12, then n13 and n23 are odd and n 13 + n23 is even and the

term vanishes . If none are zero and n12 + n13 is odd , then either n12

or n 13 must be even . Assume n12 is even , then n23 is odd and n13 + n23

is even, resulting in a vanishing term. Consequently, for k = 3, the non-

vanishing terms are (0,0,0), (1,0,0), (3,0,0),... and their permutations.

Therefo re

-17- 
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2m+1 2n1+1 2m+l

T3 
= (½)~ + (2ir ) 3”2 

m~0L~
2 1 3 2  H

~m
(0)H i

(O)

r 2m+l 2ni+l

= 1 + I ~l2 ~~~ ~~23 (2m)!
8 4ir m=~L 

2m+l

- 1 (cos p12+cos~~p13+cos~~p23)

the well-known formula for the trivariate orthant probability ; also the

power series for cos ’x converges for l x i < 1. Hence , despite the di-

vergence of the series for the density function at 0 for p > ½~~ 
the

tetrachoric series for the trivariate orthant probabilities converges for

all ~~~

The analysis of the convergence of the tetrachoric series for orthant

~robabi 1itie s for k > 3 is somewhat more complicated . To aid in this analysis ,

we introduce the following l emma .

L~ T~tA 
1. If k > 2 is even , then the non-zero terms in (1 .5), when

= 0, i l ,2,...,k, are those terms in wh i ch an even number (including

zero) of the ni
’s are zero .

L _ _ _ _  

-18- , •
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If k > 3 is odd , a term in (1.5) is non— zero , when h~ = 0,

= 1 ,2,.. .,k, if in~ onl y if an odd number of the n i ’s are zero .

Proof. From (2.11), (1.5) and (1.2), a term in the tetrachoric series

for the orthant proba b4iities is non-zero if and only if each n 1 is either

zero or a positive odd integer.

Considerin g such terms , if k > 2 is even and an odd number of the n i ’s

are zero , then 
~~~ 

= 2Zn 1~ is even and is the sum of an odd number of

positive odd integers , wh i ch is a contradiction .

Similarl y, if k > 3 is odd and an even number of the n~.’s are zero,

then ~~n1 is the sum of an odd number of odd numbers and can not be even .

We now investigate the convergence of the tetrachoric series for k > 3.

[~~~v1A 2. Let k > 4 be an even integer and let

n12 
= n34 = = “k-l ,k 

= 2m+l , n.. = 2m otherwise , m = 0,1 ,2 

Then if p > l/(k-l),

N k
M 

~~~ 
P 

(n H 
~(o)) (~(0)k (3.6)

.fl.n . .! i=i n1
1<3 13

~

.

~

T:T:T

~ 

.ii:~ ii i-Il 
1.r r j r j ~~~~~-



~ .—•-~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•
~~~~~~~~~~~~

——
~~~~

----

tends to infinity as m Co, where N = 
~ 

n i ..
I <j

Proof. Since N = 
~~

- (2m(k-l)+l),

~(2m(k-l )+l )
Mm k (P) 

= 

((2m+l) !)~~~((2m) 
,)k(k 2]7~ 

(H2(k l)(0))
k(~(0))

k.

Write

.(2m (k-l)+l )
M ( ) = 

p 1 , ~ k k
m ,k ~ (2~~l)

k/2(2m)jk(k_l)/2 ‘ 2m (k -l)’ ~ ~ 0

Then , using (2.11) and the elementary inequality

( 2 e ~~n~~~ < n! < 2(2 e
_n

nn~~ 
, 

(3.7)

we get



H ( ) > (2~)
(k )/4

P
kI2(2m(k

~
1)+l)(k l)mk(k~1)

m ,k (2~~l)
k/2mk(k_1)/4 2k~3k-fl/4

2 )_k(k41)/4 k/2 k k 1
(~~~])k/2 mk 1 4 2 3k-fl7~ 

(P(k l))m - , 
(3.8)

wh i ch clearly tends to infinity , whenever p > 1/(k-1). This leads to the

following therorem.

THEOREM 3. The tetrachoric series (1.5) with h~ = 0, i = l ,2,...,k ,

diverges for k an even integer whenever ~~ > p > l/(k-l), 1 < i < j < k.

Proof. The proof is immediate upon observing that for each fixed m ,

Mm k (P) is a term in the tetrachoric series for orthant probabilities when

p~ . = p,  1 < I < j < k. Thus we have exhibited a divergent subsequence of

terms, wh i ch clearly precl udes convergence. The same l ower bound (3.8)

applies if p.~ > p, 1 < i < j < k , yielding the same conclusi on in this case .

We now consider the tetrachoric series with Kibble ordering for the

orthant probabilities and even values of k, restricting to the case

= p, 1 < i < j < k. This is a power series in p, of the form

-21- 
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~ N 
an d the previous argument does not show that 

~ k does not tendu=o ‘

to zero , s i n c e

2
~N k ~ (n. .!) (~ (O)) IT H (3.9)
‘ n. .>~ ~~ i=l n 113—

and in Lemma 2 we made a specific choice of the n1 ,~’s, rather than computing

THEoREM 4. The tetrachoric series with Kibbl e ordering (1.6) for orthant

probabili ties diverges for even k > 4, whenever ~~ > p > l/ (k-1),

1 < i < j  < k.

Proof. Let N = ~- (2m(k- l ) + l ) .  The Mm k (P) (3.6) is a term in (3.9)

r Or that N. From Lemma 1 , the non-zero terms of (3 .9) all have an even

ri -ber of ni’s equa l to zero .

If all n
~ 

are odd , then from (2.11), the sign of such terms is given by

(~ l)~~~
1
~~~~ = ( 1 ) N k / 2

-22- 
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and ueperlus only on 
~~~. Thus , for  f i x e d  N , all terms with the Oppos ite

si gn must be among those terms w ith a posit ive even number of n1 ‘ s equal

to zero . Let be the sum of all terms in (3.9) with no n 1
4 s zero and

let 
~N ,k 

be the sum of all terms in (3.9) with at least two n i
’s equal to

zero . Then , for p > 0,

0 ~~M~~~(P) ~~ N k (p)p N , (3.10)

where > 0 , s i n c e  N ~[2m(k-l)+ 1 ] and N - ~~
- is necessarily even .

Obviously, °N ,k = 1N ,k +

Cons ider the tetrachoric series with Kibble ordering for 2~ = k - 2.

Since each term in 
~N k  has at lea st two n

~ 
= 0 , each such term appears in

• the tetrachoric series with Kibble order ing for £ variables wi th the

omission of the factors (H 1 (O)~ (O)) 2 . Thus ,

2 2 Co Co ij T-

~ H k~~~ <~~~ (0)H 1(o) ( ~ ) ~~ . . .  ~ ~~(O) n -i-- fl H
N O  ‘ n 12 0 n~~1 ~~O i<j ij~ i 1  i

— 2 —



r

Since for l/(k-1) < p < l/(k-3), 
~~~~ 

conve rges absolutely by Theorem 2,

0 as N Co and Mm k (P) -* Co~ Further , (3.10) implies that

N~Q 
°N ,k~ 

diverges for l/(k-i)< p < l/(k-3), but this is a power series

and hence divergence is estab’ished for all p > l/(k-l). The conclus ion

now follows trivially.

There is an extensive literature on the evaluation of orthant pro-

babilities for k = 4. Many references may be found in N.L. Johnson and

S. Kotz [5], pages 53—58. One of these methods merits co’inent here since it

specifically employs the tetrathoric series with Kibble ordering. In

P.A.P. Moran [11], the tetravariate orthant probability is used to calculate

the variance of the Spearman rank correlation coefficient. To obtain the

orthant probability , Moran rederived the tetrachoric series and explicitly

calculated the fi rst few terms of the tetrachoric series with Kibble ordering .

He made no comment about the validity of the series , but did comment that

for the problem at hand calculation is tedious .

The convergence properties of the tetrachoric series for orthant pro-

babilities appear to be more difficult to investigate when k is odd . These

b 

properties are discussed in the following theorems.
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THEOREM 5. Let k be an odd integer > 3 and order all the correla-

tion coefficients by absolute magnitude , that is, I~1 I ~~ . 
1p 2 1 ~~~ 

... 
~~ I

q = (~
), so that p has the vth largest magnitude among the ~~~ 1 < i < j < k .

If the tetrachoric series (tetrachoric series with Kibble ordering ) for

orthant probabilities converges absolutely for Z = k-I with corre~ation co-

efficients p
~
, v = l ,2,...,(~), then the tetrachori c series (tetrachori c

series with Kibb le ordering) for the orthant probabilities converges

absolutely for k.

Proof. We have

Co Co Ip. . 1~~ 
k

Tk ~ 
... (~(~))k ~ n

13
r n Ifin _l (0)l. (3.11)

n12 0 nk_ 1 ,k=O 1<j ij~ i 1  I

From Lemma 1 , every non-zero term in Tk must have at least one n.~ equal to

zero. Thus , successively setting each n1 equal to zero, we get

k I ~~1J k
Tk ~~~ ~ 

~ (~(0))k ~~~~~~ H 1H 1 (o)k (3.12)
v 1  n. .>O ~<j fl. .! 1 1  1

i ,j4v 13

L~~•~ ~I.~H±1 •~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~



the right side of (3.12) dominates (3.11) since we have enumerated terms

with more than one n~ 
= 0 more than once . For each fixed v, the inner sum dom-

inates ~
(O)Ik..l . Thus (3.11) converges absolutely whenever each of the

k series in (3.12) conve rges absolutely. Each such series depends on

(~
‘) correlation coefficients . For each series in (3.12) if p~ is not in

the set of (
~

) correlation coefficients of largest magnitude , we replace it

by one that does not tppear in the series in such a way that each

= 1 ,2,...,(~) appears once . Thus ,

n.
Co Co I~ I 13 ~

T
k 

< k ( p ( O ) )
k

H
1

(O) ~ . . .  II ~ II III _ 1 1 0H,
n12 0 n2~1~~~O i<i 1i i 1  i

,~ich converges by hypothesis. The conclusion for the tetrachoric series

~~ K i b b l e  ordering follows upon rearrangement of the terms.

• ~•\~K 
We have actually proved the absolute convergence of the

tetrachoric series whenever each of the k series in (3.12) converges

absol utely.

~~~~~~~~~~~~~~ 1. If each = p ,  then the tetrachoric series (tetrachoric

ser ies ~ith Kibb le orderinj) for the orthant probabilities conve rges
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absolute ly whenever - l /( k - l )  < p < l/(k-2), for k an odd integer > 5.

Proof. The concl usion fol lows from combining Theorem 5 and Theorem 2.

CoRoLLARY 2. If k = 3, the tetrachoric series (tetrachoric series with

Kibble ordering) converges absolutely.

Proof. This is i mmediate from Theorems 5 and 2.

The observations utilized in Theorem 5 also enable us to establish the

following.

THEOREM 6, If k > 5  is odd and if p1~ > l/(k-2) for 1 < i < j < k,

then the tetrachoric series (tetrachori c series with Kibble ordering) for

the orthant probabilities diverges .

Proof. Consider the tetrachoric series with Kibble ordering. From

Lemma 1 , the contribution to °N ,k (3.9) is zero unless an odd number of the

are zero and the remainder are positive odd integers . Write

~ k 
= 

~~ k + 

~M k’ 
where y~ k are these terms with exactly one n. = 0. Then, ,

‘rN k = k ~ II (n1.!~~
1 
~~(O) H 1 (O) H H

n~~>O i<j 3 1=1 n 1

where 2. = k - 1 and 1 < I < j < 2.. From Theorem 4, ZY N k P
N diverges for

-27-



> 1/(k-2) = l/(2.-l). 
~N k  corresponds to those terms with at least 3 or

more n ,~ = 0. Each such term occurs in the tetrachoric series with Kibble

ordering for k - 3 variables . For l/(k-2) < p < 1/(k-4), that series is

absolutely convergent. Thus , the methodology of Theorem 4 applies and we

obtain the conclusion .

So far we have only considered the case of orthant probabilities.

Therefore , we now show that similar resul ts obtain in a somewhat more general

case. For this purpose , we require the following l emma .

~~~~v1v1A 3. Let x ~ s n / 2 ( k—1 ) , where s and k are integers , and

k > 2 .  Then

cos u (x) = ~~ 
[(2(k_ 1)m_ i )

½ 
~ - 

((k_l)m_ l) 
it ]

does not tend to zero as m tends to infinity .

Proof. Let m~ = 4j2(k-1), j = 1,2 Then

-28-
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cos umj
(X) = cos ~4j 2 (k- l) 2- ~)

2
x - 2j2(k-l) 2it+~]

½

= - sin [2j(k-i)(l - 2 ~ 2~ 
x)

8j (k-i)

Since

2j(k- l) - . 
I < 2j(k-1)(l- ~~ 1 )½ 

< 2j(k- 1),
~~~~~~~ ~ 8~ (k —i )

• for any c > 0, there is a such that for all j  > j0

)s inE2j(k-1 )( l- 2 2)½ x) - sin 2j(k - l)xj  < ~

8i (k-i)

Hence if

u r n  sin[2j(k-i)(1 - 2 
1 

2~ 
xj = 0,

aj (k- 1 )

it fol lows that x = sit/2(k-1), s an integer.

L~ ~ 
_ _ _



• We now show that unde r specific circumstances, the tetrachoric series

dive rges for 
~~ ~ 

p > l/(k-l).

THEOREM 7. If p~ > p > l/(k-l), Tk(x x . .  . ,x) diverges whenever

L~ ~ sTr/2(k-l), s an integer.

Proof. Let 
~~~~~ 

be the term of Tk(x,x ,. . . ,x) with ~~ = p, ~~ = m.

Then

mk(k-i)12 k k= 

~~~i~
-
~k 1)/2 ~ (x)  H (k..1)m_l (X)

~ 
(3.14)

We examine the behavior of Q
m p

(X) as m -‘
~~~~~~. From Erd~1~ i, Magnus ,

Oberhettinger , Tricomi [3], p. 201,

H0(x) 
= fl/2 n cos(( 2~~1 )½x - ~~~~ + Q((~~~n~~), (3.15)

as n -* Co~ Replacing the gamma functions in (3.15) by Stirling ’s approximation ,

we obtain

—30—
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nk
2 k/2 2 1

Hk(x) = n 
~~~ 

cos k ((~~±i)2x - 9~)e’°~ 
/‘4 ( l+O(n~~2)).  (3.16)

e2

Substituting (3.16) into (3.14) and again employing Stirling ’s approximation

yields

mk(k-l)/2 2~~
2 
~~~~~~~~~~~~~~~~~~~~~~~

~m ,p 
x — 

~~~~~~~~~~~~~~~~~~~~~~~~

cosk(( 2 m ~~~ x - 
m
~~~ )(l÷O(m~~)). (3.17)

Writing

((k~l)m~l) k~~~~
mtZ [(k l)ffl]k ( k l ) m / 2 (] - 

1 )k(k l)Il1 /2

= ((k_I)m)k m/2e
_
~~
2(1#O (m~~))

an d substituting this into (3.17) , we get

-31-
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( ) - ((k_fl~)
mk(k_l)122k/2e

_kx /4
l(k l)m_l]_k12

X - ______ ___________________________________

COs
k [( 2(k-i)m-1)½ x — ((

k_1)m_1 )it)(l.fO(m
_½
)) (3.18)

Then , if x f sit/2(k- l), s an integer , it follows from Lemma 3 that there

exists a subsequence {rn,~} such that

ur n 
~ m ~‘~I =

v-3~ v ,p

whenever p > l/ (k-l). Clearly, this precludes the convergence of the

tetrachoric series for p1~ 
= p > l/ (k-1), 1 < I < j < k and consequently

for p
~ 

> p, 1 < I < j < k .

CONcLuDING f~cJ.1APi,~~ In this paper , we have shown that the tetrachoric

series need not converge . We have exhibited some instances of convergence

and some of divergence. The results of this paper do not exhaust all the

possibilities , that is , not all the possible choices of the p.~~,

1 < i < j < k or h 1, I = 1,2 ,..., k have been treated. Further investigation

-32-
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will be needed to resolve the remaining cases . However, we have shown

that the tetrachoric series shoul d be employed in appl i cations only under

highly restrictive conditions .
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A b s t r a c t  — continued

Other specific results concerning the convergence or divergenc e of this

~.enies are also given .

The principal point is that the assert ion that the tetrachoric series

converges for all k ~ 2 and all such that the correlat ion matrix is pos i t i ve

def in i t e  is false.
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